

Abstract

A series of pyrano[3,2-c]pyridine derivatives were synthesized via reactions of 3,5-dibenzylidene-piperidin-4-one and malononitrile in N, N-dimethylformamide under microwave irradiation. It is a simple, efficient, and promising synthetic method to construct pyrano[3,2-c]pyridine skeleton.

J. Heterocyclic Chem., 46, 828 (2009).

INTRODUCTION

Since the cytotoxic activity of (E)-3,5-bis (benzyli-dene)-4-piperidones 1 (Fig. 1) and their specificity toward leukemia cell lines with IC_{50} values $<10 \mu M$ have been reported [1] in 1992, the design and synthesis of their derivatives have been an object of big interest because of their potential application. The practice of incorporating chalcones into heterocyclic nitrogenous ring has been noticed recently [2-6]. The studies show that compound 2 is potential broad-spectrum antitumor agents [4].

Microwave irradiation (MWI) of organic reactions has rapidly gained popularity because it accelerates a variety of synthetic transformations [7] and have the prominent advantages of short reaction time and high yield [8].

It is well known that the 2-amino-3-cyanopyrans was obtained by the reaction of chalcones with malononitrile, and several articles on this topic can be found in the literature [9]. However, there are few reports for the synthesis of 2. These methods generally required long reaction time [4,5] or used EtONa [6] as catalyst. To provide vast new compounds for biomedical screening, a simple and efficient method for the synthesis of these molecules is urgently required.

In continuation of our recent interest in the construction of heterocyclic scaffolds [10], we herein describe a practical, inexpensive, rapid microwaveassisted method for the preparation of pyrano[3,2-c] pyridine derivatives via reactions of 3,5-dibenzylidenepi-peridin-4-one and malononitrile in N, N-dimethylformamide (DMF) (Scheme 1).

RESULTS AND DISCUSSION

To explore conditions of the reaction of 3,5-dibenzyli-denepiperidin-4-one $\mathbf{3}$ and malononitrile $\mathbf{4}$ in DMF (Scheme 1) under MWI, various reaction conditions were investigated, including solvent and temperature. To search for the optimal reaction solvent, the reaction of 3,5-bis(4-chlorobenzylidene)-1-methylpiperidin-4-one (3c) and malononitrile 4, was examined in ethylene glycol, DMF, glacial acetic acid, and ethanol, respectively (Table 1 , entries $1-4$) under MWI at the maximum power of 200 W . As shown in Table 1, the reaction in DMF resulted in higher yields and shorter reaction time than others. So DMF was chosen as the appropriate solvent. To further optimize the reaction condition, the same reaction was carried out in DMF at temperatures ranging from 90 to $140^{\circ} \mathrm{C}$ (Table 1, entries 5-9), with an increment of $10^{\circ} \mathrm{C}$ each time. As shown in Table 1, the yields of product was increased and the reaction time was shortened when the temperature was increased from 90 to $120^{\circ} \mathrm{C}$, however, further increase of the temperature from 130 to $140^{\circ} \mathrm{C}$ failed to improve the yield (Table 1 , entries 9 and 10). Therefore, $120^{\circ} \mathrm{C}$ was chosen as the most suitable temperature for all further micro-wave-assisted reactions.

Based on these optimized conditions [DMF, $120^{\circ} \mathrm{C}$, 200 W (maximum power)], reactions of different 3,5-dibenzylidenepiperidin-4-ones and malononitrile were performed, a series of pyrano[3,2-c]pyridine derivatives were synthesized with good yields. The results (Table 2, entries 1-12) indicated that for 3,5-dibenzylidenepiperi-din-4-one bearing different functional groups such as

1

2

Figure 1. 3,5-Dibenzylidenepiperidin-4-one and its derivatives.
chloro, bromo, fluoro, nitro, or methyl the reaction proceeded smoothly in all cases. We have also observed the electronic effects: that is, 3,5-dibenzylidenepiperi-din-4-one with electron-withdrawing groups (Table 2, entries 3-6) reacted rapidly, whereas electron-rich groups (Table 2, entry 2) decreased the reactivity, requiring longer reaction time.
A possible mechanism for the formation of the product $\mathbf{5}$ is outlined in Scheme 2. We proposed that the formation of $\mathbf{5}$ proceeds via an initial Michael addition reaction of chalcones and malononitrile to afford intermediate $\mathbf{6}$, which then cyclized to give compound 5.
The structures of all the synthesized compounds were established on the basis of their spectroscopic data. The IR spectrum of compound $\mathbf{5 b}$ showed strong absorptions at $3389 \mathrm{~cm}^{-1}$ and $3295 \mathrm{~cm}^{-1}$ due to the NH_{2} group, $2178 \mathrm{~cm}^{-1}$ due to the CN group. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 b}$ showed a broad singlet at $\delta 6.76$ due to the $-\mathrm{NH}_{2}$ proton and a singlet at $\delta 6.87$ due to the $=\mathrm{CH}$ proton. In the IR spectrum of compound $\mathbf{5 h}$, the appearance of bands at $3329 \mathrm{~cm}^{-1}, 3279 \mathrm{~cm}^{-1}$, and $2192{ }^{-1}$ due to the NH_{2} and CN triple bound. The appearance of a broad singlet at $\delta 6.90$ due to the NH_{2} protons and a singlet at $\delta 6.92$ due to $=\mathrm{CH}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum further confirmed the structure of product.
In conclusion, we have developed a simple and efficient method for the synthesis of pyrano[3,2-c]pyridine derivatives. The protocol includes particularly valuable features of excellent yield, shorten reaction time, reduced environmental impact, and straightforward procedure.

EXPERIMENTAL

All reactions were performed in a monomodal Emrys ${ }^{\text {TM }}$ Creator from Personal Chemistry, Uppsala, Sweden. Melting points were determined in open capillaries and are uncorrected.

Table 1
Optimization for the synthesis of $\mathbf{5 c}$.

Entry	Solvent	$T\left({ }^{\circ} \mathrm{C}\right)$	Time (min)	Yield (\%)
1	HOAc	100	8	45
2	Glycol	100	8	86
3	DMF	100	8	91
4	EtOH	100	8	83
5	DMF	90	8	90
6	DMF	110	7	92
7	DMF	120	6	94
8	DMF	130	6	92
9	DMF	140	6	90

IR spectra were recorded on an FTIR-tensor 27 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a DPX 400 MHz spectrometer using TMS as an internal standard and DMSO- d_{6} as solvent. Elemental analysis was determined by using a PerkinElmer 240c elemental analysis instrument.

General procedure for the synthesis of compound 3 N . In a 50 mL reaction vial, a mixture of 4-piperidone (10 mmol), the appropriate aldehyde $(20 \mathrm{mmol}), 1 \mathrm{~mL} \quad 10 \% \mathrm{NaOH}$ and $30 \mathrm{~mL} 95 \% \mathrm{EtOH}$ was stirred at room temperature for $0.5-2 \mathrm{~h}$. The separated solid was then filtered.

General procedure for the synthesis of compound 5 under MWI. In a 10 mL reaction vial, the 3,5-dibenzylidene-piperidin-4-one 3 (1 mmol), malononitrile (1.1 mmol), and DMF (2 mL) were mixed and then capped. The mixture was irradiated at 200 W (initial power 150 W , maximum power 200 W) at $120^{\circ} \mathrm{C}$ for a given time. On completion (the reaction was monitored by TLC), the reaction mixture was cooled to room temperature and poured into water $(70 \mathrm{~mL})$, filtered to give the crude product, which was further purified by recrystallization from $95 \% \mathrm{EtOH}$ to give pure product.

2-Amino-8-benzylidene-5,6,7,8-tetrahydro-6-methyl-4-phe-nyl-4H-pyrano[3,2-c]pyridine-3-carbonitrile (5a). IR (KBr) 3338, 3284, 2189, 1683, 1640, 1619, 1594, 1489, 1453, 1415, 1399, 1326, 1272, 1218, 1171, 1110, 1050, 917, 904, 878, 766, 756, $699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.43-7.35(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{ArH}), 7.31-7.22(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 6.93(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.84$ (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $4.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 3.28\left(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.00(\mathrm{~d}, 1 \mathrm{H}, J=16.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 2.57\left(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}\right): \delta=159.79,143.49,139.15,135.93$, $128.96,128.69,128.49,127.60,127.46,127.14,121.43$, $120.44,113.23,112.71,55.86,54.56,54.08,44.50,41.07$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 77.72 ; \mathrm{H}, 5.96$; N, 11.82; found C, $77.83 ; \mathrm{H}, 5.94 ; \mathrm{N}, 11.79$.

8-(4-Methylbenzylidene)-2-amino-4-(4-methylphenyl)-5,6,7,8-tetrahydro-6-methyl-4H-pyrano[3,2-c]pyridine-3-carbonitrile (5b). IR (KBr) 3389, 3295, 2178, 1682, 1644, 1604, 1511, $1461,1448,1416,1395,1323,1269,1205,1171,1101,1055$, $911,812 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta 7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.0$ $\mathrm{Hz} \mathrm{ArH}), 7.17-7.13(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, ArH), $6.87(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.76$ (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $3.99(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 3.46\left(\mathrm{~d}, 1 \mathrm{H}, J=14.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.28(\mathrm{~d}, 1 \mathrm{H}, J=17.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 2.96\left(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.53(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.17.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.14(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=159.72,140.55,139.08$, $136.53,136.21,133.09,129.23,129.09,128.92,127.50$,

Table 2
Synthesis of compounds 5 under microwave irradiation.

Entry	Product	R	Ar	Time/min	Yield (\%)	$\mathrm{Mp} /{ }^{\circ} \mathrm{C}$
1	5a	Methyl	$\mathrm{C}_{6} \mathrm{H}_{5}$	6	93	200-202
2	5b	Methyl	4- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	9	92	215-217 (214-215) ${ }^{\text {a }}$
3	5c	Methyl	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	6	94	238-240
4	5d	Methyl	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	7	91	225-227
5	5e	Methyl	4-NO2 $\mathrm{C}_{6} \mathrm{H}_{4}$	7	92	238-240
6	5 f	Methyl	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	7	93	245-246
7	5 g	Benzyl	$\mathrm{C}_{6} \mathrm{H}_{5}$	6	94	226-228
8	5h	Benzyl	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	7	94	243-245
9	5 i	Benzyl	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	7	93	235-237
10	5j	Benzyl	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	7	90	225-227
11	5k	Benzyl	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	7	89	233-236
12	51	Benzyl	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	7	92	242-244

${ }^{\text {a }}$ Literature melting point.
$126.80,121.28,120.48,112.93,55.99,54.56,54.17,44.52$, 40.70, 20.79, 20.65. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 78.30, \mathrm{H}$, 6.57 ; N, 10.96; found C, 78.39 ; H, 6.56; N, 10.92.

8-(4-Chlorobenzylidene)-2-amino-4-(4-chlorophenyl)-5,6,7,8-tetrahydro-6-methyl-4H-pyrano[3,2-c]pyridine-3-carbonitrile (5c). IR (KBr) 3365, 3289, 2180, 1681, 1645, 1605, 1489, 1461, 1449, 1413, 1393, 1321, 1267, 1207, 1169, 1092, 1056, 1014, 986, 911, 817, 737, $697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ 7.48-7.43 (m, 4H, ArH), 7.26 (m, 4H, ArH), 6.92 (brs, 2H, $\left.\mathrm{NH}_{2}\right), 6.89(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.46(\mathrm{~d}, 1 \mathrm{H}, J=$ $13.6 \mathrm{~Hz}, \mathrm{CH}_{2}$), $3.28\left(\mathrm{~d}, 1 \mathrm{H}, J=14.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.00(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=16.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.55\left(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.16(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=159.79,142.43,139.23$, 134.78, 131.76, 131.72, 130.71, 129.47, 128.70, 128.51, 128.13, 120.36, 120.19, 113.25, 55.54, 54.39, 53.92, 44.40, 40.39. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 65.10, \mathrm{H}, 4.51$; N , 9.90; found C, 65.01; H, 4.53; N, 9.94.

8-(3-Nitrobenzylidene)-2-amino-5,6,7,8-tetrahydro-6-methyl-4-(3-nitrophenyl)-4H-pyrano[3,2-c]pyridine-3-carbonitrile (5d). IR (KBr) 3359, 3267, 2190, 1676, 1639, 1596, 1522, 1456, 1416, 1348, 1266, 1174, 1116, 1052, 984, 899, 818, 738, 714, $682 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.19-8.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, 8.09 (s, 1H, ArH) 8.06 (s, 1H, ArH), 7.75-7.69 (m, 4H, ArH), 7.05 (brs, $3 \mathrm{H}, \mathrm{NH}_{2}$, and $\left.=\mathrm{CH}\right), 4.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.53(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=14.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.28\left(\mathrm{~d}, 1 \mathrm{H}, J=14.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.09(\mathrm{~d}$, $1 \mathrm{H}, J=16.4 \mathrm{~Hz}, \mathrm{CH}_{2}$), $2.59\left(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.17$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right): \delta=159.98,148.06$, $147.94,145.66,139.42,137.45,135.14,134.46,130.48$, 130.09 , 129.62, 123.37, 122.41, 122.04, 121.84, 119.98, 119.84, 113.67, 55.07, 54.14, 53.60, 44.25, 40.48. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, 62.02, H, $4.30 ; \mathrm{N}, 15.72$; found $\mathrm{C}, 62.17$; H, 4.28; N, 15.66.

8-(4-Nitrobenzylidene)-2-amino-5,6,7,8-tetrahydro-6-methyl-4-(4-nitrophenyl)-4H-pyrano[3,2-c]pyridine-3-carbonitrile (5e). IR (KBr) 3365, 3293, 2182, 1688, 1642, 1593, 1521, 1458, 1418, 1392, 1340, 1273, 1172, 1097, 1055, 907, 868, 809, 716 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.26$ (d, 4H, $J=8.0 \mathrm{~Hz}, \operatorname{ArH}$), $7.54(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{ArH}) 7.06$ (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 7.03 (s, $1 \mathrm{H},=\mathrm{CH}), 4.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.53\left(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $3.48-3.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.08\left(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.56$ (d, $1 \mathrm{H}, J=16.4 \mathrm{~Hz}, \mathrm{CH}_{2}$), $2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right): \delta=159.91,150.84,146.75,145.93,142.74$,
139.46, 130.70, 130.09, 128.98, 124.10, 123.70, 120.07, $119.95,114.32,56.01,54.75,54.25,53.81,44.30,40.69$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, $62.02, \mathrm{H}, 4.30 ; \mathrm{N}, 15.72$; found C , 61.92; H, 4.32; N, 15.77.

8-(4-Bromobenzylidene)-2-amino-4-(4-bromophenyl)-5,6,7,8-tetrahydro-6-methyl-4H-pyrano[3,2-c]pyridine-3-carbonitrile (5f). IR (KBr) 3364, 3283, 2181, 1681, 1644, 1590, 1486, 1459, 1409, 1391, 1321, 1267, 1169, 1104, 1074, 1010, 910, 895 , 828, 814, $734 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.61-7.56(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{ArH}), 7.23-7.18$ (m, 4H, ArH), 6.89 (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.87 $(\mathrm{s}, 1 \mathrm{H},=\mathrm{CH}), 4.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.46(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}$, CH_{2}), $3.26\left(\mathrm{~d}, 1 \mathrm{H}, J=14.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.00(\mathrm{~d}, 1 \mathrm{H}, J=16.4$ $\mathrm{Hz}, \mathrm{CH}_{2}$), $2.53\left(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13}$ C NMR (DMSO- d_{6}): $\delta=159.72,142.77,139.18,135.05$, $131.55,131.36,130.93,129.78,128.11,120.35,120.30$, 120.18, 120.11, 113.16, 55.39, 54.32, 53.85, 44.33, 40.40 . Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}$: C, 53.83, $\mathrm{H}, 3.73$; N, 8.19; found C, 53.96; H, 3.70; N, 8.15.

2-Amino-6-benzyl-8-benzylidene-5,6,7,8-tetrahydro-4-phenyl-4H-pyrano[3,2-c]pyridine-3-carbonitrile (5g). IR (KBr) 3299, 3259, 2189, 1684, 1639, 1618, 1592, 1491, 1453, 1400, 1374, 1349, 1269, 1218, 1169, 1100, 1075, 1042, 919, 878, 746, 696 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.37-7.32$ (m, 4H, ArH), 7.29$7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.23-7.19(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.18-7.16$ (m, $3 \mathrm{H}, \mathrm{ArH}), 7.09-7.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.95(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.86$ (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 4.01 (s, $1 \mathrm{H}, \mathrm{CH}$), 3.63 (d, $1 \mathrm{H}, J=14.4 \mathrm{~Hz}$,

Scheme 2

CH_{2}), $3.45\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 3.07\left(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $2.69\left(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=$ $159.79,143.48,139.47,137.74,135.89,128.87,128.64$, 128.38 , 128.00, $127.56,127.10,126.91,121.83,120.39$, 112.87, 59.89, 56.05, 52.26, 51.69, 41.07. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 80.72, \mathrm{H}, 5.84 ; \mathrm{N}, 9.74$; found $\mathrm{C}, 80.86 ; \mathrm{H}$, 5.83; N, 9.70.

8-(4-Chlorobenzylidene)-2-amino-6-benzyl-4-(4-chlorophenyl)-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]pyridine-3-carbonitrile (5h). IR (KBr) 3329, 3279, 2192, 1683, 1649, 1598, 1489, 1411, 1395, 1375, 1325, 1265, 1214, 1169, 1091, 1049, 1013, 917, 884, 826, 753, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.43-7.39$ (m, 4H, ArH), 7.23-7.17 (m, 7H, ArH), 7.07-7.06 (m, 2H, $\mathrm{ArH}), 6.92(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.90\left(\right.$ brs, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.07(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 3.61\left(\mathrm{~d}, 1 \mathrm{H}, J=14.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.46-3.42(\mathrm{~m}, 3 \mathrm{H}$, CH_{2}), 3.06 (d, $1 \mathrm{H}, J=16.8 \mathrm{~Hz}, \mathrm{CH}_{2}$), $2.66(\mathrm{~d}, 1 \mathrm{H}, J=16.0$ $\mathrm{Hz}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=159.78,142.45,139.46$, $137.69,134.73,131.70,130.62,129.45128 .66,128.60,128.42$, $127.99,127.74,126.94,120.79,120.19,112.86,112.72,59.65$, 55.60, 51.81, 51.61, 40.30. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}$, 69.60, H, 4.63; N, 8.40; found C, 69.75; H, 4.62; N, 8.37.

8-(4-Fluorobenzylidene)-2-amino-6-benzyl-4-(4-fluorophenyl)-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]pyridine-3-carbonitrile (5i). IR (KBr) 3334, 3298, 2197, 1684, 1650, 1602, 1507, 1417, 1398, 1375, 1267, 1225, 1157, 1091, 916, 831, 780, 756, 697 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.25-7.20(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}$), 7.19$7.14(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 7.08-7.06(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.92(\mathrm{~s}, 1 \mathrm{H}$, $=\mathrm{CH}), 6.83\left(\right.$ brs, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.59(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=14.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.40(\mathrm{~d}, 1 \mathrm{H}, J=14.4$ $\mathrm{Hz}, \mathrm{CH}_{2}$), 3.05 (d, $1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}_{2}$), $2.65(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.0 \mathrm{~Hz}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=162.28,159.72$, $139.63,139.37,137.69,132.28,130.93,130.85,129.49$, $129.40,128.62,127.99,126.94,120.86,120.32,115.51$, $115.43,115.30,115.21,112.66,59.75,55.84,51.98,51.57$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 74.50 ; \mathrm{H}, 4.96 ; \mathrm{N}, 8.99$; found C, 74.66; H, 4.93; N, 8.95.

8-(3-Nitrobenzylidene)-2-amino-6-benzyl-5,6,7,8-tetrahydro-4-(3-nitrophenyl)-4H-pyrano[3,2-c]pyridine-3-carbonitrile (5j). IR (KBr) 3337, 3293, 2184, 1679, 1647, 1596, 1522, 1465, 1399, 1351, 1263, 1218, 1159, 1085, 914, 815, 739, 695, 685 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.16-8.17$ (m, 1H, ArH), 8.12$8.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.03$ (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $7.70-7.65(\mathrm{~m}, 4 \mathrm{H}$, ArH), 7.12-7.11 (m, 3H, ArH), $7.07(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.06-7.04$ $(\mathrm{m}, 4 \mathrm{H}, \mathrm{ArH}), 4.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.66(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}$, CH_{2}), 3.54 (d, $1 \mathrm{H}, J=15.2 \mathrm{~Hz}, \mathrm{CH}_{2}$), $3.49-3.34$ (m, 2 H , $\left.\mathrm{CH}_{2}\right), 3.13\left(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.69(\mathrm{~d}, 1 \mathrm{H}, J=16.0$ $\mathrm{Hz}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=159.78,142.45,139.46$, $137.69,134.73,131.70,130.62,129.45,128.66,128.60$, $128.42,127.99,127.74,126.93,120.79,112.87,59.65,56.01$, 55.60, 51.89, 51.81, 51.62, 40.29. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, $66.79 ; \mathrm{H}, 4.45 ; \mathrm{N}, 13.43$; found C, $66.96 ; \mathrm{H}$, 4.42; N, 13.39.

8-(4-Nitrobenzylidene)-2-amino-6-benzyl-5,6,7,8-tetrahydro-4-(4-nitrophenyl)-4H-pyrano[3,2-c]pyridine-3-carbonitrile (5k). IR (KBr) 3329, 3301, 2200, 1681, 1650, 1591, 1517, 1421, 1398, 1340, 1269, 1218, 1168, 1108, 920, 895, 859, 811, 748, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.24-8.19(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$, $7.51-7.48(\mathrm{~m}, 4 \mathrm{H}, \operatorname{ArH}), 7.15(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.14-7.13(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}$), $7.08-7.06$ (m, 3H, ArH), 7.05 (brs $2 \mathrm{H}, \mathrm{NH}_{2}$), 4.31 (s, 1H, CH), $3.69\left(\mathrm{~d}, 1 \mathrm{H}, J=14.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.53(\mathrm{~d}, 1 \mathrm{H}, J=$ $14.8 \mathrm{~Hz}, \mathrm{CH}_{2}$), $3.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.13(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz}$,
CH_{2}), $2.66\left(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=159.90,150.89,146.73,145.92,142.73,139.70,137.52$, $130.34,130.01,128.97,128.57,127.98,126.95,124.03$, 123.60, 113.88, 59.42, 54.85, 51.58, 40.59. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{5}$: C, $66.79 ; \mathrm{H}, 4.45 ; \mathrm{N}, 13.43$; found C, $66.64 ; \mathrm{H}$, 4.47; N, 13.48.

8-(4-Bromobenzylidene)-2-amino-6-benzyl-4-(4-bromophenyl)-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]pyridine-3-carbonitrile (5l). IR (KBr) 3326, 3293, 2196, 1681, 1644, 1594, 1485, 1407, 1392, 1373, 1322, 1267, 1170, 1098, 1071, 1010, 917, 887, 815, 749, $696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 751-7.48$ (m, 4H, ArH), 7.14-7.12 (m, 5H, ArH), 7.10 (m, 2H, ArH) 7.02$7.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.86$ (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), $6.84(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH})$, 3.99 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 3.56 (d, $1 \mathrm{H}, J=14.4 \mathrm{~Hz}, \mathrm{CH}_{2}$), $3.40-3.36$ (m, 3H , CH_{2}), $3.00\left(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.60(\mathrm{~d}, 1 \mathrm{H}, J$ $=16.0 \mathrm{~Hz}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta=159.77,142.87$, $139.46,137.69,135.06,131.59,131.34,130.92,129.83$, 128.60, 128.01, 120.32, 120.23, 112.84, 59.62, 55.48, 51.75, 51.67, 40.36. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 59.10, \mathrm{H}$, 3.94; N, 7.13; found C, $58.95 ; \mathrm{H}, 3.95$; N, 7.16.

Acknowledgments. This work was supported by National Science Foundation of China (No. 20672090), Natural Science Foundation of the Jiangsu Province (No. BK20060330), the Qing Lan Project (No. 08QLT001), and Six Kinds of Professional Elite Foundation of Jiangsu Province (No. 06-A-039).

REFERENCES AND NOTES

[1] Dimmock, J. R.; Arora, V. K.; Duffy, M. J.; Reid, R. S.; Allen, T. M.; Kao, G. Y. Drug Des Discov 1992, 8, 291.
[2] El-Barbary, A. A.; Khodair, A. I.; Pederson, E. B.; Nielsen, C. J Med Chem 1994, 37, 73.
[3] Al-Obaid, A. M.; El-Subbagh, H. I.; Khodair, A. I.; Elmazar, M. M. M. A. Anticancer Drugs 1996, 7, 873.
[4] El-Subbagh, H. I.; Abu-Zaid, S. M.; Mahran, M. A.; Badria, F. A.; Al-Obaid, A. M. J Med Chem 2000, 43, 2915.
[5] Hammam, A. E.-F. G.; Sharaf, M. A.; El-Hafez, N. A. A. Indian J Chem Sect B 2001, 40B, 213.
[6] Kumar, R. R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. Bioorg Med Chem Lett 2007, 17, 6459.
[7] (a) Bose, A. K.; Banik, B. K.; Lavlinskaia, N.; Jayaraman, M.; Manhas, M. S. Chemtech 1997, 27, 18; (b) Caddick, S. Tetrahedron 1995, 51, 10403.
[8] Gedye, R.; Smith, F.; Westawaym, K.; Humera, A.; Baldisern, L.; Laberge, L.; Rousell, J. Tetrahedron Lett 1986, 27, 279.
[9] (a) Soto, J. L.; Seoane, C.; Martin, N.; Blanco, L. A. Heterocycle 1983, 20, 803; (b) Soto, J. L.; Seoane, C.; Martin, N.; Quinteiro, M. Heterocycles 1984, 22, 1; (c) Popat, K. H.; Kachhadia, V. V.; Nimavat, K. S.; Joshi, H. S. J Indian Chem Soc 2004, 81, 157; (d) Armesto, D.; Horspool, W. M.; Martin, N.; Ramos, A.; Seoane, C. J Chem Soc: Chem Commun 1987, 16, 1231; (e) Armesto, D.; Horspool, W. M.; Martin, N.; Ramos, A.; Seoane, C. J Org Chem 1989, 54, 3069; (f) Gonzalez, R.; Martin, N.; Seoane, C.; Marco, J. L.; Albert, A.; Cano, F. H. Tetrahedron Lett 1992, 33, 3809; (g) Martin, N.; Seoane, C.; Soto, J. L. Tetrahedron 1988, 44, 5861; (h) Ciller, J. A.; Martin, N.; Seoane, C.; Jose, L. S. J Chem Soc Perkin Trans 1 1985, 2581; (i) Bellanato, J.; Florencio, F.; Martin, N.; Seoane, C. J Mol Struct 1988, 172, 63; (j) Bellanato, J.; Florencio, F.; Garcia Blanco, S.; Martin, N.; Seoane, C. J Mol Struct 1987, 162, 19.
[10] Tu, S. J.; Jiang, B.; Zhang, Y.; Jia, R. H., Zhang, J. Y.; Yao, C. S.; Shi, F. Org Biomol Chem 2007, 5, 355.

